Metabolism of pre-messenger RNA splicing cofactors: modification of U6 RNA is dependent on its interaction with U4 RNA.

نویسندگان

  • D B Zerby
  • J R Patton
چکیده

The requirements for the formation of pseudouridine (psi) in U4 and U6 RNAs, cofactors in the splicing of pre-messenger RNA, were investigated in vitro using HeLa nuclear (NE) and cytoplasmic (S100) extracts. Maximal psi formation for both RNAs was extract order-dependent. Maximal psi formation in U4 RNA required incubation in S100 followed by the addition of NE, paralleling the in vivo maturation pathway of U4 RNA. In contrast, maximal formation of psi in U6 RNA required incubation in NE followed by the addition of S100 extract. Since U6 RNA does not exit the nucleus in vivo the contribution of S100 was investigated. In experiments where the extracts were treated with micrococcal nuclease to digest endogenous snRNAs, the efficient formation of psi in U6 RNA was dependent on the presence of U4 RNA, but not in U5 RNA or tRNA. When mutant U4 RNAs that inhibit or strengthen the interaction between U4 RNA, and U6 RNA were substituted for wild-type U4 RNA, the results confirmed the need for the interaction between these two RNAs for psi formation in U6 RNA. U6 RNA isolated from glycerol gradients after incubation in extracts had four times as much psi when associated with U4 RNA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modification of human U4 RNA requires U6 RNA and multiple pseudouridine synthases.

Small nuclear RNAs (snRNA), cofactors in the splicing of pre-mRNA, are highly modified. In this report the modification of human U4 RNA was studied using cell extracts and in vitro synthesized, and therefore unmodified, U4 RNA. The formation of pseudouridine (Psi) at positions 4, 72 and 79 in U4 RNA was dependent on an RNA-containing cofactor, since the activities in the extracts were micrococc...

متن کامل

Structure and interactions of the first three RNA recognition motifs of splicing factor prp24.

The essential Saccharomyces cerevisiae pre-messenger RNA splicing protein 24 (Prp24) has four RNA recognition motifs (RRMs) and facilitates U6 RNA base-pairing with U4 RNA during spliceosome assembly. Prp24 is a component of the free U6 small nuclear ribonucleoprotein particle (snRNP) but not the U4/U6 bi-snRNP, and so is thought to be displaced from U6 by U4/U6 base-pairing. The interaction pa...

متن کامل

The RNA binding protein Cwc2 interacts directly with the U6 snRNA to link the nineteen complex to the spliceosome during pre-mRNA splicing

Intron removal during pre-messenger RNA (pre-mRNA) splicing involves arrangement of snRNAs into conformations that promote the two catalytic steps. The Prp19 complex [nineteen complex (NTC)] can specify U5 and U6 snRNA interactions with pre-mRNA during spliceosome activation. A candidate for linking the NTC to the snRNAs is the NTC protein Cwc2, which contains motifs known to bind RNA, a zinc f...

متن کامل

RNA unwinding in U4/U6 snRNPs requires ATP hydrolysis and the DEIH-box splicing factor Brr2

BACKGROUND The dynamic rearrangements of RNA structure which occur during pre-mRNA splicing are thought to be mediated by members of the DExD/H-box family of RNA-dependent ATPases. Although three DExD/H-box splicing factors have recently been shown to unwind synthetic RNA duplexes in purified systems, in no case has the natural biological substrate been identified. A duplex RNA target of partic...

متن کامل

Lsm Proteins Promote Regeneration of Pre-mRNA Splicing Activity

Lsm proteins are ubiquitous, multifunctional proteins that affect the processing of most RNAs in eukaryotic cells, but their function is unknown. A complex of seven Lsm proteins, Lsm2-8, associates with the U6 small nuclear RNA (snRNA) that is a component of spliceosome complexes in which pre-mRNA splicing occurs. Spliceosomes contain five snRNAs, U1, U2, U4, U5, and U6, that are packaged as ri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 24 18  شماره 

صفحات  -

تاریخ انتشار 1996